Stability analysis for pod yield and its component traits in some peanut genotypes

Ghada B. Abd El-aziz¹ and Hoda. E.A. Ibrahim²

¹ Oil Crops Dep., FCRI, A R C, Giza, Egypt
² Central Laboratory for Design & Statistical Analysis Research, A R C, Giza, Egypt. Corresponding author: <u>darshahmed21@gmail.com</u>

Abstract

Eight peanut genotypes were grown at two locations during four successive summer seasons from 2014 to 2017 to give eight environments in order to evaluate yield stability. Significant genotype \times environment interaction was detected for all traits. Results revealed that peanut genotypes Sohag116, Sohag119 and Sohag120 were superior in their mean performance for yield and yield components, The regression coefficient value was approached unity in genotypes VAC-R92, Sohag nos. 116, 119 and 120 also, pod weight and seed weight, genotypes Sohag nos. 116 and 119 as well as number of pods and number of seeds plant⁻¹ genotypes Giza 6, Line 9, VAC-R92 and Sohag 119 as well as shelling percentage, genotypes Sohag 112, Line 9, Introduction 508 and Sohag 120 as well as 100-pod weight, genotypes Sohag 112, Introduction 508 and VAC-R92 for 100-seed weight genotypes Sohag 112, Line 9, Introduction 508 and Sohag 116 for pod yield fed⁻¹., where the value of bi almost approached unity, indicating average response to the fluctuating environmental conditions prevailed. Genotypes VAC-R92, Sohag nos. 116 and 120 had the highest pod weight plant⁻¹, number of pods plant⁻¹, number of seeds plant⁻¹ and seed weight plant⁻¹ among the tested genotypes, as they had high mean of pods (50.19) over population average mean of pods plant⁻¹ (46.5) peanut genotypes VAC-R92, Sohag nos. 119 and 120 for 100- pod weight (g), genotypes Sohag nos. 116 and 119 for 100-seed weight (g), genotypes Sohag nos. 116, 19 and 120 for pod yield fed⁻¹ (ard.). These genotypes are suitable especially for favorable growing seasons as they had nearest (bi) value to 1. genotype Sohg112 recorded the highest number of pods plant⁻¹ over the grand mean, whereas genotypes Sohag nos. 116 and 120 gave highest shelling percentage, genotype Sohag116 gave the highest 100-pod weight and Sohag120 gave the highest number of seeds plant⁻¹ indicated that these genotypes are fitted, for less favorable locations as they had low (bi) value (b<1). Such genotypes can be utilized in a breeding program for transferring stability characters in to high yielding cultivars peanut as genotype 8 which was the best one.

Key words: Peanut, Stability, Pod yield, Yield components.

Introduction

Groundnut or peanut (Arachis hypogaea L.), a segmental allopolyploid, self-pollinated legume. Popularly known as peanut, groundnut or poor man's cashew. It is widely cultivated as legume/oil crop in more than 114 countries including tropical to temperate region (Abo-Elezz et al., 2010). It is an important oil, food and feed legume, where kernels are rich in oil (48-50 %) and protein (25-28%). It stated that global groundnut production increased marginally in last decade by just 0.4% only (Janila et al., 2013). Since Asian and African countries accounts for the 93% of global groundnut production, where cultivation is predominantly under rainfed and resource poor conditions (Knauft and Gorbet, 1993). The lower productivity in groundnut is mainly due to various biotic and abiotic stresses. Yield is a complex character resulting from interplay of various yield contributing characters, which have positive or negative association with yield and among themselves also. The consistent performance of a genotype over a range of environments is essential for a wide stability of a variety. Stability of genotypes depends upon maintaining expression of certain morphological and physiological attributes and allowing others to vary, resulting in G×E interactions. G×E interaction has a masking effect on the performance of a genotype and hence the relative ranking of the genotype do not remain the same over number of environments. Stability of genotypes to environmental fluctuations is important for stabilization of crop production both temporally and spatially. Estimation of phenotypic stability, which involves regression analysis, has proven to be a valuable tool in the assessment of varietal adaptability. Stability analysis is useful in the identification of stable genotypes and in predicting the responses of various genotypes over changing environments (Eberhart and Russell, 1966; Finlay and Wilkinson, 1963). It is generally agreed that the more stable genotypes adjust their phenotypic responses to provide some measure of uniformity in spite of environmental fluctuations (Patil et al., 2014). Therefore, an attempt has been made in present study to evaluate different groundnut genotypes across the different locations to know the role of G×E interactions and also to analyze the stability of genotypes for different traits.

Materials and Methods

The experiments were carried out during four successive summer seasons of 2014, 2015, 2016 and

2017 at Assuit and Shandweel agricultural research station. Eight peanut genotypes were used for this experiment. The name and origin of genotypes are shown in Table (1). 6 Soil samples were collected from each experimental area (Ass., Sh.) from the upper soil layer (30 cm). The samples from each experimental area were mixed together to make combined sample for each location. Each combined samples was subjected to lab analysis to determined physical and chemical properties of soil as presented in Table (2). The experiment was laid out in a randomized complete block design (RCBD) with three replications at eight environments (2 locations

x 4 years). Plot area was 9.6 m² (4 rows, 4 m long and 60 cm apart). Distance between hills within rows was 15 cm with one plant left per hill after thinning. Cultural practices were done according to recommendations. The two guarded inner rows were harvested to determine the following characteristics: pod weight plant⁻¹(g), number of pods plant⁻¹, number of seeds plant⁻¹, seed weight plant⁻¹ (g), shelling percentage (%), 100-seed weight (g), 100pod weight (g) and pod yield fed⁻¹. (ardab), where (one ardab = 75 kg and one feddan = 4200 m²). Data of yield components were recorded on ten guarded plants per plot.

Table 1. Name and Origin of the eight peanut genotypes.

No	Genotype	Pedigree	Origin
1	Giza6 (G1)	A commercial cultivar	Egypt
2	Sohag112 (G2)	A line selected from H7 x VAC-R92	Egypt 1998
3	Line9 (G3)	A line selected from L 382 x Giza5	Egypt
4	Introduction 508 (G4)	Not available	USA
5	VAC-R92 (G5)	Not available	USA
6	Sohag116 (G6)	A line selected from H9 x NC-7	Egypt 1998
7	Sohag119 (G7)	A line selected from Intr.500 x L262	Egypt 1998
8	Sohag120 (G8)	A line selected from Intr.500 x NC-7	Egypt 1998

Table 2. Some physical and chemical properties of experimental soils of Assuit (Ass.) and Shandweel (Sh).

									Org	anic	Ava	ilable	nutrie	nts in	soil (pj	pm)
Years	Text	ture	Ca	1 ++	EC	dsm	Soil	ph	mat (O .		Ν	1	F	•	ŀ	K
	Ass.	Sh.	Ass	Sh.	Ass	Sh.	Ass	Sh.	Ass	Sh.	Ass	Sh.	Ass	Sh.	Ass	Sh.
2014	sandy	Clay loam	2.16	7.6	0.42	0.087	8.10	7.8	0.27	1.1	0.5	15	8.31	18	11.7	82
2015	sandy	Clay loam	2.10	7.9	0.39	0.09	8.50	7.9	0.22	1.3	0.3	18	8.32	19	11.9	77
2016	sandy	Clay loam	2.00	7.8	0.35	0.086	8.55	7.7	0.21	1.1	0.4	16	8.28	19	12.1	80
2017	sandy	Clay loam	2.18	7.7	0.40	0.08 9	8.47	7.9	0.25	1.2	0.4	17	8.30	18	12.0	79

Homogeneity test was used to satisfy the assumption of homogeneity of variances before running the combined analysis on the eight genotypes and eight environments (two locations and four years) according to Bartlett's test.

A combined analysis of variance across locations was computed assuming replications and locations effects as random and genotypes as fixed variable (Steel *et al.*, 1997). Mean comparisons for these traits were done according to **Duncan's** Test at P < 0.05 (Duncan, 1955).

Stability analysis

The stability analysis was done following **Eberhart and Russel (1966)** model which interprets the variance of regression deviations as a measure of cultivar stability and the liner regression coefficient (b) as a measure of environmental index. In this model, mean (μ) and environmental index (Ij) are used as dependent and independent variables

respectively to compute the regression coefficient. According to this model, an ideal genotype should have high mean (μ >X), a unit regression coefficient (bi=1) and no deviation from linearity (S²di=0).

The basic model for the Eberhart and Russel (1966) model is:

$$Yij = \mu i + \beta iIj + \delta ij,$$

Where.

 Y_{ij} = genotypic mean of ith genotype at jth environment. μ i= mean of ith genotype over all environments bi= regression coefficient which measures the response of ith genotype to environments I_j= environmental index as mean of all genotypes at jth environment minus the overall mean, and δ ij= deviation from regression coefficient of ith genotype at jth

Results and Discussion

Bartlett's test indicated homogenous error variance for the traits in each of eight environments

and allowed to proceed further for pooled analysis across environments. Genotype, environment variances and genotype \times environment interaction

were significant for all traits except number of pods plant⁻¹for genotypes Table (3).

Source of Variance	df	Pod weight plant ⁻¹	No. of pods plant ⁻¹	No. of seeds plant ⁻¹	Seed weight plant (g)	Shelling %	100- pod weight (g)	100- seed weight	Pod yield fed ⁻¹ (ardab)
Genotypes(G)	7	3790.91 **	112.67	1779.13 [*]	1883.01* *	16.97**	8342.00 [*]	617.66 [*]	121.58 [*]
Environments(E)	7	3878.68 **	714.19* *	839.00**	1611.21* *	4.46 *	2979.43 **	431.88 **	247.88 [*]
GxE	49	390.35* *	100.91* *	203.099*	167.13**	3.45*	668.24**	37.76*	4.37*
Pooled error	128	62.78	23.57	41.82	26.66	1.39	157.19	8.49	3.11
Total	191								

Table 3. Combined analysis of variance of evaluated genotypes over different environments.

* and ** significant at 0.05 and 0.01 probability levels, respectively.

The existence of significant difference among the genotypes was the representation of the difference of genetic potentiality of the genotypes for the evaluated characteristics; also, the existence of significant difference among the studied environments represents the significant variety effect in the additive structure of data for the evaluated characteristics among the environments. Similar results were reported by Minimol *et al.* (2001), Mahasi *et al.* (2006) and Zerihun *et al.* (2011).

Mean performance of genotypes for eight studied traits is shown in Table (4). Results revealed that the means values varied from 83.60 to 123.35 g with an average of 97.88 g for pod weight plant⁻¹, from 43.78 to 50.19 with an average of 46.5 for number of pods plant⁻¹, from 65.52 to 83.91 with an average of 73.67for number of seeds plant⁻¹, from 53.28 to 81.81 with an average of 63.62 g for seed weight plant⁻¹, from 63.63 to 66.42 with an average of 64.93 for shelling percentage %, from 186.98 to 245.36 with an average of 202.47 g for 100- pod weight, from 81.51 to 97.27 with an average of 86.13 g for 100-seed weight, and from 21.44 to 27.64 with an average of 25.61 ardab for pod yield fed-1. The genotype Sohag 120 produced the highest values for all studied traits. Regarding the environments, (Table 4), there were significant effects on the studied traits, indicating a wide range of environmental effects. Assuit environment (4) had the highest mean values of environments for pod weight plant⁻¹, number of seeds plant⁻¹, Seed weight plant⁻¹ (g) and 100- pod weight, and Assuit environment (3) had the highest mean values of environments for pod yield fed.⁻¹, Meanwhile, Shandweel environment (6) had the highest mean values of environments for 100- seed weight. The reverse trend was true for different traits and environments. In this connection, some investigators emphasized that environments had great effects on peanut genotypes traits Therefore, Assuit environments were the best environment. Similar results were reported by (Abd El-Rahman et al. (2016) and Minde et al. (2017).

The mean squares due to genotype were highly significant for all the studied characters except number of pods plant⁻¹ (Table 5), which revealed the presence of substantial amount of variation among the groundnut genotypes. The significant mean squares for environment (linear) for various traits were also reported by Habib et al. (1986) and Patil et al. (2014). Variance due to genotypes \times environment (linear) was significant for pod weight plant⁻¹, No. of seeds plant⁻¹, seed weight plant (g) and pod yield fed-1 (ardeb). Significance of variance due to environment (linear) was observed for all the characters studied except shelling percentage and 100-pod weight (g), (Table 5). The higher magnitude of mean squares for environment (linear) compared to genotypes \times environments (linear) indicated that linear response of environment accounted for the major part of total variation for all studied characters and may be responsible for high adaptation in relation to yield and other traits. Therefore, prediction of performance of genotypes over environments would be possible for the various characters. Similar findings were reported by Thaware (2009), Pradhan et al. (2010), Habib et al. (1986) and Patil et al. (2014). Variance due to pooled deviation was significant for all studied characters indicating that genotypes differed considerably with respect to their stability. The significant pooled deviation (Non-linear) for various traits were also reported by Senapati et al. (2004), Chuni Lal et al. (2006) and Patil et al. (2014). Interactions of genotypes with environments obtained as the environment + genotype \times environments (e + $g \times e$) were significant for all characters (Table 5), which suggested the distinct nature of environments and genotype \times environment interactions in phenotypic expression. The significant environment + (genotype × environment) interactions for various traits were also reported by Joshi et al. (2003) and Patil et al. (2014).

Table 4. Mean performance of studied traits over different environments.

Tuble	Env. code		۸	ssuit			Shar	ndweel		
т :	Env. code	2014	2015		2017	2014			2017	-
Trait	0	2014		2016	2017	2014	2015	2016	2017	Mean
	Genotypes	Env.1	Env.2	Env.3	Env.4	Env.5	Env.6	Env.7	Env.8	
	Giza 6	81.190	94.30	100.16	101.96	79.250	99.350	80.92	92.12	91.16de
It_	SOHAG112	85.82	87.44	92.163	90.00	78.40	103.02	77.907	85.69	87.56ef
laı	LINE9	84.78	97.70	94.17	105.89	67.87	75.50	69.55	73.33	83.60f
ıt p	INTRO. 508	90.63	88.93	97.94	123.27	84.53	92.10	78.54	92.01	93.49cd
igi	VAC-R92	98.78	75.18	91.33	146.08	93.90	110.39	89.99	107.10	101.59b
we	SOHAG116	101.75	92.34	133.67	137.27	72.93	118.24	75.88	115.96	106.01b
Pod weight plant ⁻¹	SOHAG119	102.86	78.93	105.02	116.02	74.57	101.63	82.77	108.60	96.29c
Pc	SOHAG120	147.10	93.58	110.17	144.21	113.75	133.76	106.45	137.73	123.35a
	Mean	99.12c	88.55d	103.08bc	120.59a	83.15e	104.25b	82.75e	101.57bc	97.88
	Giza 6	46.41	52.67	53.47	49.95	36.89	44.47	35.62	44.55	45.50bc
Ţ	SOHAG112	42.92	43.73	59.50	41.59	45.66	51.83	43.37	49.10	47.22b
an	LINE9	40.24	58.00	51.55	46.13	36.67	39.77	34.85	43.29	43.81c
pl	INTRO. 508	40.24 52.22	46.39	56.07	56.22	36.92	39.17	36.79	43.29	46.07bc
qs				46.93						
bd	VAC-R92	46.53	34.46		62.78	45.12	49.20	43.34	52.81	47.65ab
of	SOHAG116	42.80	37.73	63.74	58.08	35.92	52.72	36.02	55.22	47.78ab
No. of pods plant ⁻¹	SOHAG119	46.84	39.53	51.09	50.19	33.68	43.91	37.89	47.07	43.78c
~	SOHAG120	60.87	42.00	49.19	55.16	43.41	51.47	45.51	53.89	50.19a
	Mean	47.35c	44.32d	53.94b	52.52b	39.28e	46.57cd	39.18e	48.85a	46.5
-	Giza 6	67.16	76.27	86.47	80.08	61.37	66.51	62.64	70.89	71.43c
nt.	SOHAG112	71.74	69.85	77.69	66.02	64.90	67.41	65.21	71.81	69.33c
ola	LINE9	66.33	81.19	78.44	77.97	54.38	52.74	56.44	56.65	65.52d
ls l	INTRO. 508	74.33	73.69	80.77	86.40	63.93	63.10	64.17	72.21	72.33c
eec	VAC-R92	75.73	60.08	77.20	99.37	68.95	79.57	69.15	79.50	76.19b
No. of seeds plant ⁻¹	SOHAG116	75.02	68.88	109.48	96.15	55.04	86.88	56.72	88.21	79.55b
•	SOHAG119	71.55	65.97	86.75	82.02	52.30	73.38	58.79	77.69	71.06c
Ž	SOHAG120	93.32	66.96	80.06	95.93	76.44	90.57	73.58	94.42	83.91a
	Mean	74.40bc	70.36d	84.61a	85.49a	62.16e	72.52cd	63.34e	76.43b	73.67
				04.01a			12.5200	U.J.J+C	/0.4.20	//
	-									
It-1	Giza 6	53.09	62.51	67.32	67.09	51.79	63.27	53.33	60.48	59.86d
lant ⁻¹	Giza 6 SOHAG112	53.09 56.43	62.51 57.10	67.32 59.05	67.09 58.64	51.79 50.59	63.27 65.51	53.33 49.44	60.48 54.38	59.86d 56.39e
t plant ⁻¹	Giza 6 SOHAG112 LINE9	53.09 56.43 53.78	62.51 57.10 64.04	67.32 59.05 60.89	67.09 58.64 68.07	51.79 50.59 42.89	63.27 65.51 46.01	53.33 49.44 43.61	60.48 54.38 46.97	59.86d 56.39e 53.28f
ght plant ⁻¹ g)	Giza 6 SOHAG112 LINE9 INTRO. 508	53.09 56.43 53.78 59.77	62.51 57.10 64.04 58.09	67.32 59.05 60.89 62.89	67.09 58.64 68.07 77.71	51.79 50.59 42.89 54.34	63.27 65.51 46.01 60.32	53.33 49.44 43.61 51.26	60.48 54.38 46.97 60.27	59.86d 56.39e 53.28f 60.58d
veight plant ⁻¹ (g)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92	53.09 56.43 53.78 59.77 63.26	62.51 57.10 64.04 58.09 48.83	67.32 59.05 60.89 62.89 59.69	67.09 58.64 68.07 77.71 94.48	51.79 50.59 42.89 54.34 59.16	63.27 65.51 46.01 60.32 73.79	53.33 49.44 43.61 51.26 57.69	60.48 54.38 46.97 60.27 68.01	59.86d 56.39e 53.28f 60.58d 65.62c
d weight plant ⁻¹ (g)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116	53.09 56.43 53.78 59.77 63.26 68.22	62.51 57.10 64.04 58.09 48.83 59.89	67.32 59.05 60.89 62.89 59.69 88.11	67.09 58.64 68.07 77.71 94.48 88.25	51.79 50.59 42.89 54.34 59.16 46.78	63.27 65.51 46.01 60.32 73.79 78.67	53.33 49.44 43.61 51.26 57.69 48.97	60.48 54.38 46.97 60.27 68.01 74.02	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b
ieed weight plant ⁻¹ (g)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119	53.09 56.43 53.78 59.77 63.26 68.22 64.95	62.51 57.10 64.04 58.09 48.83 59.89 52.12	67.32 59.05 60.89 62.89 59.69 88.11 68.53	67.09 58.64 68.07 77.71 94.48 88.25 74.30	51.79 50.59 42.89 54.34 59.16 46.78 47.47	63.27 65.51 46.01 60.32 73.79 78.67 65.32	53.33 49.44 43.61 51.26 57.69 48.97 54.47	60.48 54.38 46.97 60.27 68.01 74.02 71.17	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d
Seed weight plant ⁻¹ (g)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a
Seed weight plant ⁻¹ (g)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91 a	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62
	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b
	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG119 G1 SOHAG112 LINE9	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG110 G1 SOHAG112 LINE9 INTRODUCE5	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG119 G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.56cd
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG119 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.56cd 65.13bc
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG119 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 65.13bc 64.74cd
centage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 65.13bc 64.74cd 66.42a
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 66.42a 64.93
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean Giza 6	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 66.42a 64.74cd 66.42a 64.93 202.64d
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 66.42a 64.93
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean Giza 6	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 66.42a 64.74cd 66.42a 64.93 202.64d
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean Giza 6 SOHAG112	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13 200.03	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 65.13bc 64.74cd 66.42a 64.93 202.64d 186.98e
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean Giza 6 SOHAG112 LINE9	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13 200.03 210.80	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97 171.50	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91 183.28	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30 229.67	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74 185.02	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72 189.91	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63 199.77	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49 169.38	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.56cd 65.13bc 64.74cd 66.42a 64.74cd 66.42a 64.93 202.64d 186.98e 192.42e
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG119 SOHAG119 SOHAG120 Mean Giza 6 SOHAG112 LINE9 INTRO. 508	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13 200.03 210.80 173.91	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97 171.50 191.61	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91 183.28 177.47	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30 229.67 219.15	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74 185.02 229.20	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72 189.91 234.89	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63 199.77 213.76	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49 169.38 205.39	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.74cd 65.13bc 64.74cd 65.13bc 64.74cd 64.74cd 66.42a 64.93 202.64d 186.98e 192.42e 205.67d 213.28c
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13 200.03 210.80 173.91 212.23 237.56	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97 171.50 191.61 221.54	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91 183.28 177.47 195.73 210.86	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30 229.67 219.15 233.23 236.16	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74 185.02 229.20 208.50 203.26	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72 189.91 234.89 224.51 224.90	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63 199.77 213.76 207.84 210.85	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49 169.38 205.39 202.66 209.95	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.74cd 65.13bc 64.74cd 65.13bc 64.74cd 65.42a 64.93 202.64d 186.98e 192.42e 205.67d 213.28c 222.98b
entage	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG116 SOHAG119	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 65.74 63.93 67.06 63.38 64.43 64.43 64.89bc 175.13 200.03 210.80 173.91 212.23 237.56 219.13	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97 171.50 191.61 221.54 250.30 201.97	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91 183.28 177.47 195.73 210.86 206.68	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30 229.67 219.15 233.23 236.16 231.07	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74 185.02 229.20 208.50 203.26 221.41	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72 189.91 234.89 224.51 224.90 231.67	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63 199.77 213.76 207.84 210.85 218.37	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49 169.38 205.39 202.66 209.95 230.55	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.74cd 65.13bc 64.74cd 65.13bc 64.74cd 66.42a 64.93 202.64d 186.98e 192.42e 205.67d 213.28c 222.98b 220.11bc
Shelling percentage (%)	Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG120 Mean G1 SOHAG112 LINE9 INTRODUCE5 VAC-R92 SOHAG116 SOHAG120 Mean Giza 6 SOHAG112 LINE9 INTRO. 508 VAC-R92 SOHAG116 SOHAG119 SOHAG119 SOHAG119	53.09 56.43 53.78 59.77 63.26 68.22 64.95 94.76 64.29c 65.45 65.75 63.37 5 65.74 63.93 67.06 63.38 64.43 64.89bc 175.13 200.03 210.80 173.91 212.23 237.56	62.51 57.10 64.04 58.09 48.83 59.89 52.12 62.75 58.17d 66.27 65.30 65.66 65.35 64.94 64.68 66.00 67.04 65.66a 181.05 199.97 171.50 191.61 221.54 250.30	67.32 59.05 60.89 62.89 59.69 88.11 68.53 73.59 67.51b 67.21 64.08 64.71 64.27 65.38 65.99 65.28 66.77 65.46ab 188.19 154.91 183.28 177.47 195.73 210.86	67.09 58.64 68.07 77.71 94.48 88.25 74.30 94.75 77.91a 65.79 65.19 64.29 63.02 64.71 64.32 63.99 65.70 64.63c 204.30 216.30 229.67 219.15 233.23 236.16	51.79 50.59 42.89 54.34 59.16 46.78 47.47 75.68 53.59e 65.34 64.53 63.24 64.31 63.01 64.11 63.67 66.55 64.35c 214.91 171.74 185.02 229.20 208.50 203.26	63.27 65.51 46.01 60.32 73.79 78.67 65.32 89.09 67.75b 63.69 63.63 60.94 65.45 66.86 66.52 64.26 66.63 64.75c 223.47 198.72 189.91 234.89 224.51 224.90	53.33 49.44 43.61 51.26 57.69 48.97 54.47 71.36 53.77e 65.92 63.48 62.71 65.27 64.10 64.55 65.82 67.05 64.86bc 227.27 179.63 199.77 213.76 207.84 210.85	60.48 54.38 46.97 60.27 68.01 74.02 71.17 92.50 65.97bc 65.69 63.44 64.09 65.49 63.51 63.81 65.53 67.19 64.85bc 206.83 174.49 169.38 205.39 202.66 209.95	59.86d 56.39e 53.28f 60.58d 65.62c 69.11b 62.29d 81.81a 63.62 65.67b 64.43d 63.63e 64.87cd 64.87cd 64.74cd 65.13bc 64.74cd 65.13bc 64.74cd 65.42a 64.93 202.64d 186.98e 192.42e 205.67d 213.28c 222.98b

	Env. aada	-	Ass	suit			Shandwe	dweel		_
Trait	Env. code Genotypes	2014	2015	2016	2017	2014	2015	2016	2017	Mean
	Genotypes	Env.1	Env.2	Env.3	Env.4	Env.5	Env.6	Env.7	Env.8	
	Giza 6	79.15	81.98	78.17	83.88	84.48	95.31	85.27	85.33	84.19de
ht	SOHAG112	78.64	81.91	76.05	88.79	78.00	97.14	75.82	75.73	81.51f
weight	LINE9	81.34	78.74	77.63	87.28	78.92	87.37	77.29	83.01	81.45f
M	INTRO. 508	80.42	78.85	77.86	90.09	85.02	96.03	79.88	83.49	83.96e
100-seed	VAC-R92	83.60	81.35	77.68	95.09	85.85	92.77	83.44	85.50	85.66cd
-se	SOHAG116	91.06	86.86	80.44	91.94	85.12	90.54	86.37	83.99	87.04bc
001	SOHAG119	90.80	79.06	79.06	90.50	90.79	89.02	92.64	91.59	87.93b
	SOHAG120	101.50	93.67	91.94	98.69	99.01	98.34	97.03	97.97	97.27a
	Mean	85.81c	82.81d	79.86e	90.79b	85.90c	93.32a	84.72c	85.83c	86.13
	Giza 6	22.91	23.55	28.76	25.11	23.16	20.32	20.91	19.69	23.05de
-	SOHAG112	23.35	23.22	28.50	23.94	19.51	18.04	18.86	17.75	21.65f
yield ardab)	LINE9	24.02	23.58	28.21	22.88	19.67	17.54	17.83	17.75	21.44f
yield ardal	INTRO. 508	24.05	23.11	28.92	24.36	23.71	17.67	17.93	17.00	22.09ef
יד ס	VAC-R92	21.77	23.19	28.45	26.66	25.49	22.26	21.06	20.37	23.66cd
Pod Fed. ⁻¹ (SOHAG116	26.82	24.54	31.30	26.61	22.96	23.06	21.53	20.44	24.66c
Ę	SOHAG119	29.87	27.31	31.29	26.43	25.44	24.49	23.35	22.18	26.29b
	SOHAG120	27.98	27.57	33.29	28.66	27.47	26.48	25.84	23.86	27.64a
	Mean	25.09bc	24.51c	29.84a	25.58b	23.43d	21.23e	20.91e	19.88f	23.81

Table 4. Continued.

Table 5. Analysis of variance for pod yield and yield contributing traits under different environments

SOV	df	Pod weight plant ⁻¹	No. of pods plant ⁻¹	No. of seeds plant ⁻¹	Seed weight plant (g)	Shelling %	100- pod weight (g)	100- seed weight	Pod yield fed ⁻¹ (ardeb)
Genotypes	7	1263.67**	37.58	279.67**	627.66**	5.65**	2780.71**	205.88**	0.67**
Env. +									
(Genotypes x	56	275.46**	59.19**	133.37**	115.88**	1.26	319.05*	29.00**	0.19**
Env.)									
Environment (linear)	1	9050.49**	1666.57**	4151.31**	3759.39**	0.19	6952.14	1007.69**	9.57**
Genotype x									
Environment	7	234.85**	38.211	142.22**	100.84**	0.48	111.66	17.29	0.04**
(linear)									
Pooled deviation	48	98.57**	28.77**	48.37**	42.17**	1.11**	211.1**	10.32**	0.019**
Giza6	6	43.93	18.43**	23.46	20.08*	0.75	333.26**	12.05**	0.007
Sohag112	6	44.99	33.58**	14.54	16.35	0.93**	197.90**	20.87**	0.013
Line9	6	146.49**	52.43**	104.51**	74.15**	1.49**	300.27	3.89	0.019
Intr.508	6	34.71	18.04**	18.78	9.51	0.93	282.46**	4.59	0.019
VAC-R92	6	154.38**	51.78**	73.64**	66.78**	1.49**	52.03	3.26	0.047*
Sohag116	6	90.34**	20.44**	45.21**	36.64**	1.64**	312.10**	7.27**	0.012
Sohag119	6	37.47	3.09	10.35	17.32*	0.69	64.84	24.09**	0.025
Sohag120	6	236.22**	32.31**	96.48**	96.51**	0.94**	145.95**	6.53**	0.009
Pooled error	128	22.74	7.8	14.06	9.63	0.46	50.14**	2.89	0.017

In the present investigation, model proposed by **Eberhart and Rusell (1966)** was used for analysis of $G \times E$ interactions. This model considered both linear (*bi*) and non-linear (S^2di) components of $G \times E$ interactions for the prediction of performance of the individual genotype. Higher mean performance of genotype for various characters along with regression coefficient (*bi*) as measures of responsive and deviation from regression (S^2di) as a measure of stability were used to assess the stability and suitability of performance of genotypes was taken on the basis of average performance of all genotype as population mean.

The bi value was approached near unity in peanut genotypes VAC-R92, Sohag116, Sohag119 and Sohag120 for pod weight and seed weight, genotypes 6 and 7 for number of pods and number of seedsplant⁻¹genotypes 1, 3, 5 and 7 for shelling percentage , genotypes 2, 3, 4 and 8 for 100- pod weight ,genotypes 2, 4 and 5 for 100- seed weight genotypes 2, 3, 4 and 6 for pod yield fed⁻¹., where the value of bi almost approached unity, indicating average response to the fluctuating environmental conditions prevailed.

Genotypes 5, 6 and 8 had the highest pod weight plant⁻¹, number of pods plant⁻¹, number of seeds plant⁻¹ and seed weight plant⁻¹ among the tested

genotypes, as they had higher means of pods plant⁻¹ than overall mean value of (46.5). Peanut genotypes 5, 7 and 8 for 100- pod weight (g), genotypes 6 and 7 for 100- seed weight (g), genotypes 6, 7 and 8 for pod yield fed⁻¹ (ard.). These genotypes are suitable especially for favorable growing seasons as they had high (bi) value (b>1). These results were in accordance with the **Pradhan** *et al.* (2010) and Patil *et al.* (2014).

Peanut genotype Sohag112 recorded the highest number of pods plant⁻¹ over the grand mean (46.50), whereas genotypes 6 and 8 gave highest shelling percentage, genotype Sohag 116 gave the highest 100- pod weight and Sohag 120 gave the highest number of seedsplant⁻¹indicating that these genotypes are fitted, for less favorable locations as they had low (bi) value (b<1) these results agree with those reported by **Abd El-Rahman** *et al.* (2016) and **Hasan** *et al.* (2018)

Table 6. Estimates of stability parameters for eight peanut genotypes in all studied char	acters.
---	---------

Genotypes	Pod	weight j	plant ⁻¹	No. o	of pods p	olant ⁻¹	No.	of seeds	plant ⁻¹	Seed	weight j (g)	plant ⁻¹
	x	Bi	$\mathbf{S}^{2}\mathbf{d}$	x	Bi	$\mathbf{S}^{2}\mathbf{d}$	x	Bi	$\mathbf{S}^{2}\mathbf{d}$	x	Bi	$\mathbf{S}^{2}\mathbf{d}$
Giza 6	91.16	0.56*	621.75	45.50	0.98* *	309.26	71.4 3	0.88* *	545.61	59.8 6	0.58*	280.5 2
SOHAG11 2	87.56	0.39	449.73	47.22	0.51	255.09	69.3 3	0.29	133.46	56.3 9	0.42	181.7 4
Line9	83.60	0.69	1424.9 2	43.81	0.74	427.23	65.5 2	0.87	1016.4 5	53.2 9	0.72	686.9 3
Intro.,508	93.49	0.96* *	1243.5 1	46.07	1.29* *	459.77	72.3 3	0.86* *	497.36	60.5 8	0.89* *	431.6 9
VAC-R92	101.5 9	1.38* *	3091.4 3	47.65	0.84	458.75	76.1 9	0.96*	922.40	65.6 2	1.41* *	661.8 4
Sohag116	106.0 1	1.79* *	4197.8 3	47.78	1.86* *	845.43	79.5 5	2.09* *	2556.4 9	69.1 1	1.85* *	870.6 8
Sohag119	96.29	1.12* *	1644.5 8	43.78	1.09* *	269.32	71.0 6	1.30* *	944.26	62.2 9	1.09* *	512.3 2
Sohag120	123.3 5	1.09	2752.1 2	50.19	0.68	289.93	83.9 1	0.73	852.57	81.8 1	1.03	485.2 5
Mean	97.88	1		46.50	1		73.6 6	1		63.6 2	1	
SE	3.75	0.29		2.03	0.37		2.63	0.31		2.45	0.29	
		Shelling ⁽			pod weig			0- seed w	<u> </u>		yield fed ⁻¹	
	x	Bi	S^{2}_{d}	x	Bi	S^{2}_{d}	x	Bi	S^{2}_{d}	x	Bi	S^{2}_{d}
Giza 6	65.67	1.37	6.89	202.6 4	0.86	2643.0 5	84.1 9	0.98* *	192.96	23.0 5	0.89* *	60.51
Sohag112				186.9		2807.5	81.5	1.51*		21.6		98.11
50hug112	64.43	0.32	5.72	180.9	1.37*	2807.3 6	81.5 1	*	413.55	4	1.14* *	96.11
-	64.43 63.63	0.32 2.03	5.72 14.27		1.37* 1.12				413.55 117.08			98.11 104.2 0
Line 9				8 192.4 2 205.6		6 2892.3 8 3656.0	1 81.4 5 83.9	* 0.86*		4 21.4 3 22.0	* 1.16*	104.2 0 122.0
Line 9	63.63	2.03	14.27	8 192.4 2 205.6 7 213.2	1.12	6 2892.3 8 3656.0 3 1066.1	1 81.4 5 83.9 6 85.6	* 0.86* * 1.41*	117.08	4 21.4 3 22.0 9 23.6	* 1.16* *	104.2 0
Line 9 Intro.,508	63.63 64.87	2.03 0.54	14.27 5.95	8 192.4 2 205.6 7 213.2 8 222.9	1.12 1.50* 0.93*	6 2892.3 8 3656.0 3 1066.1 7 1989.1	1 81.4 5 83.9 6 85.6 6 87.0	* 0.86* * 1.41* * 1.29*	117.08 277.04	4 21.4 3 22.0 9 23.6 6 24.6	* 1.16* * 1.26 0.76*	104.2 0 122.0 1
Line 9 Intro.,508 VAC-R92	63.63 64.87 64.56	2.03 0.54 1.00	14.27 5.95 10.22	8 192.4 2 205.6 7 213.2 8	1.12 1.50* 0.93* *	6 2892.3 8 3656.0 3 1066.1 7	1 81.4 5 83.9 6 85.6 6	* 0.86* * 1.41* * 1.29* * 0.72*	117.08277.04231.02	4 21.4 3 22.0 9 23.6 6	* 1.16* * 1.26 0.76* * 1.06*	104.2 0 122.0 1 58.72
Line 9 Intro.,508 VAC-R92 Sohag116	63.63 64.87 64.56 65.13	2.03 0.54 1.00 0.61	14.27 5.95 10.22 10.35	8 192.4 2 205.6 7 213.2 8 222.9 8 220.1 0 245.3	1.12 1.50* 0.93* * 0.36	6 2892.3 8 3656.0 3 1066.1 7 1989.1 3 877.97 1934.4	1 81.4 5 83.9 6 85.6 6 87.0 4 87.9	* 0.86* * 1.41* * 1.29* * 0.72* *	117.08277.04231.02109.32	$ \begin{array}{c} 4\\ 21.4\\ 3\\ 22.0\\ 9\\ 23.6\\ 6\\ 24.6\\ 6\\ 26.2\\ \end{array} $	* 1.16* * 1.26 0.76* * 1.06* * 0.91*	104.2 0 122.0 1 58.72 85.64
Line 9 Intro.,508 VAC-R92 Sohag116 Sohag119	63.63 64.87 64.56 65.13 64.74	2.03 0.54 1.00 0.61 1.60	14.27 5.95 10.22 10.35 7.45	8 192.4 2 205.6 7 213.2 8 222.9 8 220.1 0	1.12 1.50* 0.93* * 0.36 0.75*	6 2892.3 8 3656.0 3 1066.1 7 1989.1 3 877.97	$ \begin{array}{c} 1\\ 81.4\\ 5\\ 83.9\\ 6\\ 85.6\\ 6\\ 87.0\\ 4\\ 87.9\\ 3\\ 97.2 \end{array} $	* 0.86* * 1.41* * 1.29* * 0.72* * 0.76	 117.08 277.04 231.02 109.32 217.22 	4 21.4 3 22.0 9 23.6 6 24.6 6 26.2 9 27.6	* 1.16* * 1.26 0.76* * 1.06* * 0.91* * 0.82*	104.2 0 122.0 1 58.72 85.64 68.48

The same letters in each column, on the basis of Duncan test have no significant differences at 5% level.

Conclusion

This information are of great importance for peanut breeders to choose a suitable genotype for fluctuating environments, i.e favorable or less favorable environments as well as to be cultivated under wide range of environments. Among the cultivars used in this study, genotypes Sohag nos. 116, 119 and 120 showed high mean performance for most studied characters, indicating stability across the environments and therefore, they could be used in a breeding programme for the development of high

yielding stable genotypes across environments in the future

References

- Abd El-Rahman Rehab, H.A., A.A. AboEl-Ezz and Fadia H.A. Ahmed (2016) Phenotypic stability analysis for pod yield and its components in some peanut genotypes Egypt J. Plant Breed.20 (3):639-651.
- Abo Elezz, A.A. and Ghada B. Abd Elazees (2010). Stability of selected peanut breeding lines (*Arachis hypogaea* L.) in Upper Egypt. Egypt. J. of Appl. Sci., 25 (8B): 390-399.
- ChuniLal, R., A.L., Rathnakumar, K., Hariprasanna, H. K. Gor, and B.M., Chikani, (2006). Early maturing groundnut advanced breeding lines with high day productivity under rainfed situations. E-Journal. Icrisat. Org, 5(1): 4.
- **Duncan, D.B.** (1955). Multiple ranges and multiple F test. Biometrics. 11:1-42.
- **Eberhart, S.A. and W. A. Russell (1966).** Stability parameters for comparing varieties. Crop Sci., 6: 36–40
- Habib, A.F., H.L., Nadaf, G. K. Kulkarni, and S.D. Nadiger, (1986). Stability analysis of pod yield in bunch groundnut. Journal of Oilseeds Research, 3: 46-50.
- Hasan.Khan, Vinay S. Patted, M, B. Arunkumar and I. Shankergoud (2018). Stability Estimates for Pod Yield and Its Component Traits in Groundnut (Arachis hypogaea L.) under Farmer's Participatory Varietal Selection Int. J. Curr. Microbiol. App. Sci 7(1): 3171-3179
- Janila, P., S. M., Nigam, M., Pandey, P.Nagesh, and R. K. Varshney, (2013). Groundnut improvement: use of genetic and genomic tools. Frontiers in plant science, 4:23.
- Finlay, H.W. and G.N. Wilkinson (1963). The analysis of adaptation in plant breeding program. Aust. J. Agric. Res., 14: 742-754.
- Joshi, H.J., G. B. Vekaria, and D. R., Mehta, (2003). Stability analysis for morphophysiological traits in groundnut. Legume Research, 26(1): 20-23.
- Knauft, D.A. and D.W. Gorbet (1993). Consistency of rank correlations of peanut breeding lines for

market grade characteristics and yield. Crop Sci., 33: 697-699.

- Keshavarz S., M. Mesbah, Z. Ranji, R and Amiri (2001). Study on stability parameters for determining the adaptation of sugar beet commercial varieties in different areas of IRAN. J. of Sugar Beet. 17(1): 15-36.
- Mahasi, M.J, R.S. Pathak and F.N. Waweru, (2006). Genotype by environment (GXE) interaction and stability in safflower (*Carthamus tinctorious* L.). Asian Journal of Plant Sciences 5(6): 1017-1021.
- Minde A. S., M. S. Kambleand R. M. Pawar (2017). Stability analysis for pod yield and its component traits in groundnut (*Arachis hypogaea* L.) Asian Journal of Bio Science(12):15-20
- Minimol, J.S., S.B. Datke, S.N. Deshmukh and G.N. Satpute (2001). Genotype x environment interaction in groundnut (*Arachis hypogaea* L.). Ann. Pl. Physio. 14 (1):74-79.
- Patil, A. S., H. R., Nandawar, A. A. Punewar, and K. P. Shah, (2014). Stability for yield and its component traits in groundnut (*Arachis hypogaea* L.). International J. of Bio-resource and Stress Management, 5(2):240-245.
- **Pradhan, K., P. K. Das, and R. K. Patra, (2010).** Genotype × environment interaction for pod yield and components of groundnut varieties in warm sub-humid climate and moderately acidic soil. Indian Journal of Genetics, 70(2): 201-203.
- Senapati, B. K., D. Maity, and G. Sarkar, (2004). Stability evaluation of summer groundnut (*Arachis hypogaea* L.) under coastal saline zone of West Bengal. Legume Research, 27(2): 103-106.
- Steel,R.G.D., J.H.Torrie, and D.A Dicky (1997). Principles and Procedures of Statistics. A biometrical Approach. 3rd ed. McGraw Hill inc. New York, U.S.A
- Thaware, B. L. (2009). Stability analysis for dry pod yield in Spanish bunch groundnut. Agric. Sci. Digest, 29(3): 221-223.
- Zerihun J, A, Amsalu and F. Fekadu, (2011). Assessment of yield stability and disease responses in Ethiopian Barley (*Hordeium vulgare* L.) landraces and crosses. Int. J. Agric. Res. 6:754-768

تحليل الثبات في بعض التراكيب الوراثية للفول السوداني

قسم بحوث المحاصيل الزيتية – معهد بحوث المحاصيل الحقلية – مركز البحوث الزراعية – الجيزة – مصر
 (1) قسم بحوث المعمل المركزي لبحوث التصميم والتحليل الاحصائي – مركز البحوث الزراعية – الجيزة – مصر

تمت زراعة ثمانية تراكيب وراثية من الفول السوداني في موقعين خلال أربعة مواسم صيفية متتالية من 2014 إلى 2017 لإعطاء ثمانية بيئات من أجل تقييم ثبات المحصول ومكوناته. أظهرت كل الصفات معنوية تفاعل التركيب الوراثي × بيئة. أوضحت النتائج أن التراكيب الوراثية سوهاج 116 ، 119 ، 120 كانت متفوقة بالنسبة للمحصول ومكوناته، وكانت قيم معامل الانحدار bi قريبة من الوحدة للتراكيب الوراثية -VAC R92 وسوهاج 116 ، 119، 120 لصفتي وزن القرون ووزن البذور للنبات، والتراكيب الوراثية سوهاج116 ، 119 لصفتي عدد القرون وعدد البذور للنبات، والتراكيب الوراثية جيزة 6 وسلاله 9 وVAC-R92 وسوهاج 119 لصفة نسبة التصافي، والتراكيب الوراثية سوهاج112 وسلالة 9 ومستورد 508 وسوهاج 120 لصفة وزن 100 قرن، والتراكيب الوراثية سوهاج 112 ومستورد 508 و VAC-R92 لصفة وزن 100 بذرة، والتراكيب الوراثية سوهاج112 وسلالة 9 ومستورد 508 وسوهاج116 لصفة محصول القرون للفدان؛ حيث تقترب قيمة معامل الانحدار bi تقريبا من الوحدة وأعطت التراكيب الوراثية VAC-R92 و سوهاج116 ، وسوهاج120 أعلى وزن وعدد قرون للنبات، وعدد ووزن البذور بين التراكيب الوراثية التي تم اختبارها، حيث كان لديها متوسط عالى من القرون للنبات (50.19) أكثر من المتوسط العام لعشيرة الفول السوداني (46.5)، والتراكيب الوراثية VAC–R92، سوهاج119 وسوهاج120 لصفة وزن 100 قرن ، التراكيب الوراثية سوهاج 116 ، 119 لصفة وزن 100 بذرة (جم)، التراكيب الوراثية سوهاج 116 ، 119 ، 120 لصفة وزن محصول القرون للفدان بالاردب. هذه التراكيب الوراثية مناسبة بشكل خاص لموسم النمو حيث أن لها أقرب قيمة (bi) إلى الوحدة. سجل التركيب الوراثي للفول السوداني سوهاج 112 أعلى عدد قرون للنبات عن المتوسط العام ، في حين أعطى التركيبان الورائيان سوهاج116 ، 120 أعلى نسبة تصافى، التركيب الوراثي سوهاج116 أعطى أعلى وزن 100 قرن، وأعطى سوهاج120 أعلى عدد من البذور للنبات، وقد أشارت النتائج إلى أن هذه التراكيب الوراثية تعتبرمناسبة في مواقع أقل تفضيلاً لأنها ذات قيمة (bi) منخفضىة .(b<1). يمكن استخدام العديد من هذه التراكيب الوراثية في برامج التربية لنقل صفة الثبات إلى أصناف الفول السوداني ذات الإنتاجية العالية مثل التراكيب الوراثي سوهاج 120 والذي كان أفضلها.